Sample size

Janet Wittes
Statistics Collaborative

Sample Size

- Components of the calculation
- What the applicant should say
- What the reviewer should describe

Biofeedback for Pain Management

• Endpoint: 10 cm VAS

```
- Mean = 5
```

$$-SD = 1$$

The raw ingredients

- What is the question, precisely?
- What is the outcome, precisely?
- Who will be measured and when?
- Variability
- Handling of missing values
- Other complications (e.g., multiplicity)
- Type 1 and Type 2 error rates

Difference to be detected

- "True" difference
 - Clinically important?
 - Biologically credible?
- Observed "I would kick myself" difference
- Affordable difference (\$)

Does time play a role?

- Pattern of recruitment
- Follow-up time
- Hazard over time
- Hazard ratio over time
- Competing risks

Operating characteristics

- Type 1 error rate = 0.05 two sided
 (Or 0.025 one-sided)
- Type 2 error rate = 0.90

What is the question, precisely?

- Does biofeedback control pain?
- Does does biofeedback change the mean level of pain on the VAS scale?

What is the...

- Mean difference in score?
 - Variability: SD=1
- Difference in proportions above 7?
 - Variability is binomial
- "Difference" in time to scoring 7?
 - Variability: hazard and hazard ratio

Generic Formula

Sample size per group:

$$2\sigma^2(z_1+z_2)^2$$

$$(z_1 + z_2)^2$$
 $\frac{2\sigma^2(z_1 + z_2)^2}{\delta^2}$

- Subscripts usually: $(1-\alpha)/2$ and $(1-\beta)$
- A fixed number
- You choose!
- If 0.05 and 0.90, this quantity is about 10
- Kick-yourself power (β =.5 and z_2 =0): value =4

δ^2

$$\frac{2\sigma^2 (z_1+z_2)^2}{\delta^2}$$

The difference you _____ detect.

- a) want to
- b) believe is clinically meaningful
- c) believe is biologically credible
- d) can afford to

σ^2

- From:
 - Past data
 - Assumptions in study
- Very often underestimated!
 - Past data not directly relevant
 - Problems in study inflate the variance

2

$$\frac{2\sigma^{2}(z_{1}+z_{2})^{2}}{\delta^{2}}$$

- The 2 is per group
- The factor for a two-group study is 4

The ideal: Recruitment and follow-up

- Everyone is recruited at the same time
- No one dies or is lost to follow-up
- Everyone is followed for exactly 1 year

Endpoint: difference in mean

$$\frac{2\sigma^2 (z_1+z_2)^2}{\delta^2}$$

- Assume the mean is normal: $\sigma=1$; $\delta=1$
- Sample size = 2(1)(10)/1 = 20/group
- Doubling the SD or halving the difference quadruples the sample size

Endpoint: proportion falling above 7

- (Proportion increasing 2 points)
- (Proportion increasing at least 20 percent)
- Say we want to compare 50 percent vs. 30 percent:

2(binomial variance)²
$$(z_1+z_2)^2$$

Binomial answer

- 130 per group
- If only 80 percent power, 100 per group
- If Type 1 error rate is 0.01 and power =
 - -90% n per group = 185
 - -80% n per group = 150

Time to hitting 7

- Assume exponential time to failure
- Assume that at 4 months 50% of control and 70% of treatment are still below 7
- Required sample size is 128 per group.

Minor headaches

- Distribution of the mean not normal
- Population heterogeneous
- Multiple primaries
- Interim analyses

Major headaches

- Missing data
 - Problem explicit in time-to-failure)
- Non-exponential failure
- Non-proportional hazards

Missing data

- Common approaches
 - Just Ignore
 - Last Observation Carried Forward (LOCF)
 - Something more complicated
- My principle: you should not win because of missing data

Noncompliance: Implications for Sample Size

- You need 100/group; expect 10% missing
 - LOCF: 100
 - Just Ignore: 111
 - Lavori: 1 noncompliant = 3 observed
 - Therefore, you need 90+3(10)=120

Time: Exponential/non-exponential

- Light bulb model often works well
- All we need to know is person-years of follow-up
- So, 4 people followed 1 year =
 1 person followed 4 years

Recruitment: exponential case

- Follow-each person 12 monthsrecruitment pattern doesn't matter for sample size
- Follow each person until the last recruited has 12 months of follow-up
 - Persons years of follow-up depends on recruitment pattern
 - The SLOWER the recruitment, the SMALLER the sample size

Non-exponential examples

- Post-CABG surgery:
 - Cognition impaired at first, perhaps as consequence of anesthesia
 - Long-term may show slight decline, perhaps consequence of mini-strokes

Non-proportional hazards

- Landmark vs. log-rank time to failure
- E.g., time to diabetes
 - Control
 - Diet
 - Drug
- If we stop at two years, we have no data for four years

What should the applicant say?

- Describe assumptions in detail
- Describe expected noncompliance
- Talk about handling those without endpoint

The reviewer

- Should have checked:
 - assumptions
 - calculations
- Have answers similar to those in application

Final check

- Look for tell-tale signs that the calculation was done at the last minute
- Make sure you understand δ 's justification